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Abstract-A simple transformation of displacements considerably eases the explicit derivation
of the finite element stiffness matrix for the axisymmetric elastic solid without causing a decline
in the rate of convergence. The worsening of the condition of the global stiffness matrix caused
by this transformation can be cured by scaling. A balanced numerical integration scheme
maintaining the full rate of convergence is the one that integrates each term of the work and
energy expressions to the order 2p - 2, p being the degree of the complete polynomial in the
shape functions.

1. INTRODUCTION

Since the peculiarities of the axisymmetric state of strains are confined to one-dimension
discussion is concentrated on this case. Here the radial and circumferential strains er and
e8 at a distance r from the origin are given in terms of the radial displacement u by
er = Ur = duldr and eo = ulr. Appropriately, the accuracy of the approximate solution is
measured in the energy norm 11'111

I

Ilull/ = f (e/ + el)r dr. (1)
o

The standard finite element technique[l-lO] for the construction of the stiffness matrix
out of the energy expression (l) consists of assuming u to be polynomial inside the element
and forming the entires of the matrix by integration. The appearance of the rational co­
efficient llr in it greatly encumbers the explicit integration of the circumferential energy
term, particularly in space where integration needs be carried out over triangles. Use of a
numerical integration, which is discussed later on, alleviates the tedium of the algebraic
integrations but the main purpose of this paper is to show that the transformation v = ulr,
e8 = v, er = (vr)" which removes llr from the energy, with a polynomial approximation
for v does not result in a loss of accuracy.

2. DISCRETIZATION ACCURACY

To keep matters as simple and explicit as possible a detailed analysis is carried out here
only on the first order elements. Extension of the results to higher order elements is a form­
ality. So first u is assumed to be approximated linearly inside the element r l :5: r :5: r 2 by u
in the form

(2)

where h = r2 - r l , and where UI and U2 are the values of u at the nodal points at rl ad '2'

If udenotes the finite element solution then Ilu - filii :5: lIu - ull l and hence to bound the
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error in the finite element solution it is sufficient to estimate II U - U111 for any reasonable U.
Following Synge[ll], u for that purpose is selected to be the finite element interpolate to it
such that at the nodes U = U. Also since II u - u111 2 is equal to the sum of similar terms over
all the individual elements only the typical element errors el and e2

el
2 = fZ(U r - ur)2 r dr,

r,
e/ = f\u 2/r2 - u2/r2)rdr

rl

(3)

(8)

(9)

need be evaluated.
To bound e/, u in equation (2) is differentiated yielding ur = (u 2 - ul)/h. When U2 is

expanded in a Taylor series with a remainder around 1'1 this yields ur = ut' + O(hu") where
( )' stands for differentiating with respect to I' like ( )r' Expansion of the true solution
u around 1'1 produces Ur = u l ' + 0[(1'2 - r)u"] and hence

maxlur - uri ~ ch maxlu"l (4)

where c is a generic constant independent of hand u and where the maximum is sought over
1'1 ~ r ~ r2 . Introduction of equation (4) into el

2 in equation (3) results in

eI2~c2h2maxlu"12(rl+r2)h/2. (5)

The estimation of e22 is rather simple for 1'1 > 0 since then

1
e/ ~ 2 maxlu - ul 2 (r l + r2 )h/2 (6)

r l

which with u = u l + (r - rl)u l' + (r - rl)O(hu") and u = U I + (r - rl)u l ' +O[(r - rl)V')
readily becomes

2

e/ ~ ; h4 max I u" 1
2(rl + r2)h/2. (7)

r l

The element nearest to the origin requires a special treatment. In it u= ru2 /h and since
r = 0 is not a singular point[I2] U l must vanish there. Hence in this element u/r = ut'
+O(hu"), u/r=ut'+O(ru") and consequently maxlu/r-u/rl~chmaxlu"l leading to
e/~ c2h2 maxlu"1 2h2/2 in the first element. Summation of e/ and e2

2 over all the
finite elements yields

Ilu - Gill ~ ch maxlu"l

where maxi I is now over 0 ~ r ~ 1.
When u/r is replaced v

J
rz Jrz

el 2 = [(vr)r - (iJr)r)2 r dr, e/ = (v - iJ)2 r dr.
rl '1

For a linear approximation for iJ it was previously obtained for e2 2 that

e/ ~ c2h4 maxlv"1 2Crt + r2)h/2 (10)

when v replaces u in equation (2), (rv)r = [vlh + + (2r - rl)(v2 - vl)]/h which with
Taylor's theorem becomes (riJ)r = VI + [2 r - rl)(vt' + O(hv")). On the other hand (rv)r =
(rv)l' + (r - rl)O[(rv)"J and consequently since Ir - rll ~ h the yields that

max I(rv) - (riJ)r I~ ch max Iv', v" I (11)

summation of the errors e l
2 and e/ over all the finite elements with u = vr produces the

error estimate
Ilu - Gill ~ ch maxleo', eo"l (12)

and the error in the energy norm is again O(h) since eo and its derivatives are bounded.
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In the more general case when u or v are approximated by a polynomial of degree p the
discretization error in the energy norm is O(hP). The proof to that is entirely analogous to
that just given for p = 1, except that more terms need be taken in the Taylor expansions.

The preservation of the rate of convergence with v = u/r in spite of the lack of a constant
term (the rigid body mode) in the shape functions for v can be explained in different ways.
For one, these shape functions which are (1 - e)(rl + he) and e(rl + he) where e= (r - rl)/h,
recover the complete linear polynomial away from the origin as h ~ 0; and near it the exact
solution itselflacks a constant due to symmetry. Also, it is immaterial which variables appear
in the energy expression as long as it is polynomial-like in the sense that it can be expanded in
a polynomial power series to a sufficiently high degree. Here, due to the regularity of the
solution both u and u/r are polynomial-like and assuming a polynomial approximation of
degree P for either u or u/r produces the same error 0(h2p

).

3. CONDITION OF GLOBAL STIFFNESS MATRIX

In this axisymmetric case the element stiffness matrix k e is positive definite and the spectral
condition number C2 (K) of K can be bounded[13, 14] in this case by

C2(K) ::;; Pmax max(A/e)/min(A}e) (13)
e e

where Al k and A/ denote the extremal eigenvalues of k, Pmax the maximum number of ele­
ments meeting at a nodal point and where max( ) denotes the maximum value over all
finite elements. e

In second order problems C2(K) = 0(h- 2
). Using the transformation v = u/r it increases

to CiK) = 0(h- 3
), but with the aid of equation (13) it can be shown that scaling, which

makes all K ii equal, reduces C2(K) back to the optimal 0(h- 2
).

4. NUMERICAl.., INTEGRATION

It has been shown in[15) that if the shape functions include a complete polynomial of
degree P then the full rate of convergence is maintained if each term in the work, and
potential and kinetic energies is integrated numerically to the degree-2(p-m), m being the
highest order of differentiation in the energy expressions. Here m = 1 and hence each term
need be integrated to the degree 2p - 2. For instance, if the shape functions include a
quadratic (p = 2) then a quadratic integration scheme is required and a 2 Gauss points rule,
which is already cubic, is sufficient.

5. NUMERICAL EXAMPLE

The theoretical predictions of the revious sections is tested numerically on the vibrating
elastic disc. As in statics also in dynamics[ 16], if the shape function, in second order problems,
include a complete polynomial of degree P then the error in the eigenvalues is 0(h2p

).

Figure I shows the convergence of the fundamental eigenvalue Ain the vibrating disc vs the
number of elements N e = h -I along the radius and indeed the rates of convergence with a
linear approximation to u (curve a) and a linear approximation to v = u/r (curve c) are
nearly 2. The better results obtained with the transformation v = u/r can be explained by
the fact that in this case no conditions need be imposed on v at r = 0 while without the
transformation, u must be set equal to zero at the origin r = 0 to avoid the blow-up of the
stiffness matrix, causing a loss of one degree of freedom. Curve (b) in Fig. I refers to num­
erical integration of the circumferential energy with one Gauss point which according to
section 4 should suffice, as indeed it does, to maintain the full rate of convergence.
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Fig. I. Error S'\ in fundamental eigenvalue ,\ of an elastic disc held fix at its rim vs the number
of elements Ne along the radius for; (a) a linear approximation of u; (b) a linear approximation
of v = u/r; and (c) a linear approximation of u but with the circumferential energy integrated

numerically with one Gauss point.
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A6cTJlllKT - HecJIolKHoe npe06pa30BaHHe nepeMeweHHH 3Ha'lHTeJIbHO 06JIer'laeT BbIBO,n: B
HBHOil: 4JopMe MaTpHUbI K034J4JHUHeHToB lKeCTKOCTH KOHe'lHOrO 3JIeMeHTa, ,n:JIH oceCHMMeTpH­
'1eCKOrO ynpyroro TeJIa, 6e3 BbI3BaHHH CHHlKeHHH CKOpOCTH CXO,n:HMOCTH. Yxy,n:IIIeHHe yCJIOBHH,
paCCMaTpHBaeMoil: B ueJIOM, MaTpHUbI K034J4JHUHeHToB lKeCTKOCTH, no nOBO,n:y 3Toro npe­
06paJoBaHHH, MOlKHO HCnpaBJIHTb nyTeM CBe,n:eHHH K onpe,n:eJIeHHoMy MacIIITa6y. YpaBHo­
BeIIIeHHaH cxeMa '1HCJIeHHOrO HHTerpHpOBaHHH, co,n:eplKawaH nOJIHyIO CKOpOCTb CXO,n:HMOCTH
TaKoro lKe BH,n:a, 'ITO HHTerpHpyeTcH KalK,n:blil: '1JIeH BblpalKeHHH pa60TbI H 3HeprHH ,n:o
nopH,n:Ka 2p - 2, r,n:e p HBJIHeTCH nopH,n:KOM nOJIHOrO nOJIHHOMa 4JyHKUHil: 4JOPMbI.


